Authors: Thomas Popma (Auburn University) and Michael Masser (Texas A&M University)

Worldwide harvest of farmed tilapia has now surpassed 800,000 metric tons, and tilapia are second only to carps as the most widely farmed freshwater fish in the world.

The Nile tilapia (O. niloticus) was one of the first fish species cultured. Illustrations from Egyptian tombs suggest that Nile tilapia were cultured more than 3,000 years ago. Tilapia have been called “Saint Peter’s fish” in reference to biblical passages about the fish fed to the multitudes. The Nile tilapia is still the most widely cultured species of tilapia in Africa.

Positive aquacultural characteristics of tilapia are their tolerance to poor water quality and the fact that they eat a wide range of natural food organisms. Biological constraints to the development of commercial tilapia farming are their inability to withstand sustained water temperatures below 50 to 52o F and early sexual maturity that results in spawning before fish reach market size. Following is a discussion of the characteristics and culture of nonhybrid tilapia.


“Tilapia” is the generic name of a group of cichlids endemic to Africa. The group consists of three aquaculturally important genera —Oreochromis, Sarotherodon and Tilapia. Several characteristics distinguish these three genera, but possibly the most critical relates to reproductive

behavior. All tilapia species are nest builders; fertilized eggs are guarded in the nest by a brood parent. Species of both Sarotherodon and Oreochromis are mouth brooders; eggs are fertilized in the nest but parents immediately pick up the eggs in their mouths and hold them through incubation and for several days after hatching. In Oreochromis species only females practice mouth brooding, while in Sarotherodon species either the male or both male and female are mouth brooders.

During the last half century fish farmers throughout the tropical and semi-tropical world have begun farming tilapia. Today, all commercially important tilapia outside of Africa belong to the genus Oreochromis, and more than 90 percent of all commercially farmed tilapia outside of Africa are Nile tilapia. Less commonly farmed species are Blue tilapia (O. aureus), Mozambique tilapia (O. Mossambicus) and the Zanzibar tilapia (O. urolepis hornorum).

The scientific names of tilapia species have been revised a lot in the last 30 years, creating some confusion. The scientific name of the Nile tilapia has been given as Tilapia nilotica, Sarotherodon niloticus, and currently as Oreochromis niloticus.

Physical characteristics

Tilapia are shaped much like sunfish or crappie but can be easily identified by an interrupted lateral line characteristic of the Cichlid family of fishes. They are laterally compressed and deep-bodied with long dorsal fins. The forward portion of the dorsal fin is heavily spined. Spines are also found in the pelvis and anal fins. There are usually wide vertical bars down the sides of fry, fingerlings, and sometimes adults.

Banding Patterns and Coloration

The main cultured species of tilapia usually can be distinguished by different banding patterns on the caudal fin. Nile tilapia have strong vertical bands, Blue tilapia have interrupted bands, and Mozambique tilapia have weak or no bands on the caudal fin. Male Mozambique tilapia also have upturned snouts. Color patterns on the body and fins also may distinguish species. Mature male Nile tilapia have gray or pink pigmentation in the throat region, while Mozambique tilapia have a more yellow coloration. However, coloration is often an unreliable method of distinguishing tilapia species because environment, state of sexual maturity, and food source greatly influence color intensity.

The “red” tilapia has become increasingly popular because its similar appearance to the marine red snapper gives it higher market value. The original red tilapias were genetic mutants. The first red tilapia, produced in Taiwan in the late 1960s, was a cross between a mutant reddish-orange female Mozambique tilapia and a normal male Nile tilapia. It was called the Taiwanese red tilapia. Another red strain of tilapia was developed in Florida in the 1970s by crossing a normal colored female Zanzibar tilapia with a red-gold Mozambique tilapia. A third strain of red tilapia was developed in Israel from a mutant pink Nile tilapia crossed with wild Blue tilapia. All three original strains have been crossed with other red tilapia of unreported origin or with wild

Oreochromis species. Consequently, most red tilapia in the Americas are mosaics of uncertain origin. The confused and rapidly changing genetic composition of red tilapia, as well as the lack of “head-to-head” growth comparisons between the different lines, make it difficult for a producer to identify a “best” red strain.

Other strains of tilapia selected for color include true breeding gold and yellow Mozambique lines and a “Rocky Mountain white” tilapia (a true breeding line originating from an aberrant Blue tilapia, subsequently crossed with Nile tilapia). Most strains selected for color do not grow well enough for food fish culture.

Identifying the species of an individual fish is further complicated by natural crossbreeding that has occurred between species. Electrophoresis is often used to determine the species composition of a group of tilapia.

Continue to Tilipia: Life History and Biology (part 2)

Be the first to comment

Leave a Reply

Your email address will not be published.